Block RLS using row householder reflections

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systolic block Householder transformation for RLS algorithm with two-level pipelined implementation

The QR decomposition, recursive least squares (QRD RLS) algorithm is one of the most promising RLS algorithms, due to its robust numerical stability and suitability for VLSI implementation based on a systolic array architecture. Up to now, among many techniques to implement the QR decomposition, only the Givens rotation and modified GramSchmidt methods have been successfully applied to the deve...

متن کامل

Efficient Orthogonal Parametrisation of Recurrent Neural Networks Using Householder Reflections

Recurrent Neural Networks (RNNs) have been successfully used in many applications. However, the problem of learning long-term dependencies in sequences using these networks is still a major challenge. Recent methods have been suggested to solve this problem by constraining the transition matrix to be unitary during training, which ensures that its norm is exactly equal to one. These methods eit...

متن کامل

Augmented Block Householder Arnoldi Method

Computing the eigenvalues and eigenvectors of a large sparse nonsymmetric matrix arises in many applications and can be a very computationally challenging problem. In this paper we propose the Augmented Block Householder Arnoldi (ABHA) method that combines the advantages of a block routine with an augmented Krylov routine. A public domain MATLAB code ahbeigs has been developed and numerical exp...

متن کامل

Distribution Row Block Row Cyclic Column Block Column Cyclic

[PIER89] P. Pierce, " A concurrent file system for a highly parallel mass storage subsystem " ,

متن کامل

UBk+1V Block Sparse Householder Decomposition

This paper describes Householder reduction of a rectangular sparse matrix to small band upper triangular form. Using block Householder transformations gives good orthogonality, is computationally efficient, and has good potential for parallelization. The algorithm is similar to the standard dense Householder reduction used as part of the usual dense SVD computation. For the sparse algorithm, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1993

ISSN: 0024-3795

DOI: 10.1016/0024-3795(93)90464-y